Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | import vtkConvolution2DPass from '@kitware/vtk.js/Rendering/OpenGL/Convolution2DPass'; import vtkForwardPass from '@kitware/vtk.js/Rendering/OpenGL/ForwardPass'; /** * Creates a GPU-based convolution pass for image smoothing. * * The smoothing works by applying a Gaussian blur kernel to the image, * which averages pixel values with their neighbors, effectively reducing noise * and softening edges. The intensity parameter controls the strength of the smoothing effect. * * @param intensity - Smoothing intensity (0 = no smoothing, positive values = more smoothing) * @returns vtkConvolution2DPass configured for image smoothing (Gaussian blur) */ function createSmoothingRenderPass(intensity: number) { let renderPass = vtkForwardPass.newInstance(); if (intensity > 0) { const convolutionPass = vtkConvolution2DPass.newInstance(); convolutionPass.setDelegates([renderPass]); const smoothStrength = Math.min(intensity, 1000); // Generate a 15x15 Gaussian blur kernel (σ ≈ 5.0) const kernelSize = 15; const sigma = 5.0; const gaussianKernel = createGaussianKernel(kernelSize, sigma); const totalElements = kernelSize * kernelSize; const centerIndex = Math.floor(totalElements / 2); const identityKernel: number[] = Array(totalElements).fill(0); identityKernel[centerIndex] = 1; // Blend strength const alpha = Math.min(smoothStrength / 10, 1.0); // Blend between identity and Gaussian const kernel = gaussianKernel.map( (g, i) => (1 - alpha) * identityKernel[i] + alpha * g ); convolutionPass.setKernelDimension(15); convolutionPass.setKernel(kernel); renderPass = convolutionPass; } return renderPass; } /** * Creates a normalized 2D Gaussian kernel for image smoothing. * * The Gaussian kernel is used for blurring images by averaging pixel values * with their neighbors, weighted by a Gaussian function. The kernel size and * standard deviation (sigma) control the amount and spread of smoothing. * * @param size - The width and height of the square kernel (e.g., 3, 5, 15). * @param sigma - The standard deviation of the Gaussian distribution (controls blur strength). * @returns A flattened array of kernel weights, normalized so their sum is 1. */ function createGaussianKernel(size: number, sigma: number): number[] { const kernel: number[] = []; const mean = (size - 1) / 2; let sum = 0; for (let y = 0; y < size; y++) { for (let x = 0; x < size; x++) { const dx = x - mean; const dy = y - mean; const value = Math.exp(-(dx * dx + dy * dy) / (2 * Math.pow(sigma, 2))); kernel.push(value); sum += value; } } return kernel.map((v) => v / sum); } export { createSmoothingRenderPass }; |